راکتورهای هستهای
راکتورهای هستهای دستگاههایی هستند که در آنها شکافت هستهای کنترل شده رخ میدهد. راکتورها برای تولید انرژی الکتریکی و نیز تولید نوترونها بکار میروند. اندازه و طرح راکتور بر حسب کار آن متغیر است. فرآیند شکافت که یک نوترون بوسیله یک هسته سنگین (با جرم زیاد) جذب شده و به دنبال آن به دو هسته کوچکتر همراه با آزاد سازی انرژی و چند نوترون دیگر شکافته میشود.
تاریخچه
اولین انرژی کنترل شده ناشی از شکافت هسته در دسامبر ۱۹۴۲ بدست آمد. با رهبری فرمی ساخت و راه اندازی یک پیل از آجرهای گرافیتی، اورانیوم و سوخت اکسید اورانیوم با موفقیت به نتیجه رسید. این پیل هستهای، در زیر میدان فوتبال دانشگاه شیکاگو ساخته شد و اولین راکتور هستهای فعال بود.
ساختمان راکتور
باوجود تنوع در راکتورها، تقریبا همه آنها از اجزای یکسانی تشکیل شدهاند. این اجزا شامل سوخت، پوشش برای سوخت، کند کننده نوترونهای حاصله از شکافت، خنک کنندهای برای حمل انرژی حرارتی حاصله از فرآیند شکافت ماده کنترل کننده برای کنترل نمودن میزان شکافت میباشد.
سوخت هستهای
سوخت راکتورهای هستهای باید به گونهای باشد که متحمل شکافت حاصله از نوترون بشود. پنج نوکلئید شکافت پذیر وجود دارند که در حال حاضر در راکتورها بکار میروند. ۲۳۲Th، ۲۳۳U، ۲۳۵U، ۲۳۸U، ۲۳۹Pu. برخی از این نوکلئیدها برای شکافت حاصله از نوترونهای حرارتی و برخی نیز برای شکافت حاصل از نوترونهای سریع میباشند. تفاوت بین سوخت یک خاصیت در دستهبندی راکتورها است.
در کنار قابلیت شکافت، سوخت بکار رفته در راکتور هستهای باید بتواند نیازهای دیگری را نیز تأمین کند. سوخت باید از نظر مکانیکی قوی، از نظر شیمیایی پایدار و در مقابل تخریب تشعشعی مقاوم باشد، تا تحت تغییرات فیزیکی و شیمیایی محیط راکتور قرار نگیرد. هدایت حرارتی ماده باید بالا باشد بطوری که بتواند حرارت را خیلی راحت جابجا کند. همچنین امکان بدست آوردن، ساخت راحت، هزینه نسبتا پایین و خطرناک نبودن از نظر شیمیایی از دیگر فایدههای سوخت است.
غلاف سوخت راکتور
سوختهای هستهای مستقیما در داخل راکتور قرار داده نمیشوند، بلکه همواره بصورت پوشیده شده مورد استفاده قرار میگیرند. پوشش یا غلاف سوخت، کند کننده و یا خنک کننده از آن جدا میسازد. این امر از خوردگی سوخت محافظت کرده و از گسترش محصولات شکافت حاصل از سوخت پرتو دیده به محیط اطراف جلوگیری میکند. همچنین این غلاف میتواند پشتیبان ساختاری سوخت بوده و در انتقال حرارت به آن کمک کند. ماده غلاف همانند خود سوخت باید دارای خواص خوب حرارتی و مکانیکی بوده و از نظر شیمیایی نسبت به برهمکنش با سوخت و مواد محیط پایدار باشد. همچنین لازم است غلاف دارای سطح مقطع پایینی نسبت به بر همکنشهای هستهای حاصل از نوترون بوده و در مقابل تشعشع مقاوم باشد.
مواد کند کننده نوترون
یک کند کننده مادهای است که برای کند یا حرارتی کردن نوترونهای سریع بکار میرود. هستههایی که دارای جرمی نزدیک به جرم نوترون هستند بهترین کند کننده میباشند. کند کننده برای آنکه بتواند در راکتور مورد استفاده قرار گیرد بایستی سطح مقطع جذبی پایینی نسبت به نوترون باشد. با توجه به خواص اشاره شده برای کند کننده، چند ماده هستند که میتوان از آنها استفاده کرد. هیدروژن، دوتریم، بریلیوم و کربن چند نمونه از کند کنندهها میباشند. از آنجا که بریلیوم سمی است، این ماده خیلی کم و به عنوان کند کننده در راکتور مورد استفاده قرار میگیرد. همچنین ایزوتوپهای هیدروژن، به شکل آب و آب سنگین و کربن، به شکل گرافیت به عنوان مواد کند کننده استفاده میشوند.
خنک کنندهها
گرمای حاصله از شکافت در محیط راکتور یا باید از سوخت زدوده شود و یا در نهایت این گرما بقدری زیاد شود که میلههای سوخت را ذوب کند. حرارتی که از سوخت گرفته میشود ممکن است در راکتور قدرت برای تولید برق بکار رود. از ویژگیهایی که ماده خنک کننده باید داشته باشد، هدایت حرارتی آن است تا اینکه بتواند در انتقال حرارت مؤثر باشد. همچنین پایداری شیمیایی و سطح مقطع جذب پایینتر از نوترون دو خاصیت عمده ماده خنک کننده است. نکته دیگری که باید به آن اشاره شود این است که این ماده نباید در اثر واکنشهای گاما دهنده رادیو اکتیو شوند.
از مایعات و گازها به عنوان خنک کننده استفاده شده است، مانند گازهای دیاکسید کربن و هلیوم. هلیوم ایدهآل است ولی پر هزینه بوده و تهیه مقادیر زیاد آن مشکل است. خنک کنندههای مایع شامل آب، آب سنگین و فلزات مایع هستند. از آنجا که برای جلوگیری از جوشیدن آب فشار زیادی لازم است، خنک کننده ایدهآلی نیست.
مواد کنترل کننده شکافت
برای دستیابی به فرآیند شکافت کنترل شده و یا متوقف کردن یک سیستم شکافت پس از شروع، لازم است که موادی قابل دسترس باشند که بتوانند نوترونهای اضافی را جذب کنند. مواد جاذب نوترون بر خلاف مواد دیگر مورد استفاده در محیط راکتور باید سطح مقطع جذب بالایی نسبت به نوترون داشته باشند. مواد زیادی وجود دارند که سطح مقطع جذب آنها نسبت به نوترون بالاست، ولی ماده مورد استفاده باید دارای چند خاصیت مکانیکی و شیمیایی باشد که برای این کار مفید واقع شود.
انواع راکتورها
راکتورها بر حسب نوع فرآیند شکافت به راکتورهای حرارتی، ریع و میانی (واسطه)، بر حسب مصرف سوخت به راکتورهای سوزاننده، مبدل و زاینده، بر حسب نوع سوخت به راکتورهای اورانیوم طبیعی، راکتورهای اورانیوم غنی شده با ۲۳۵U (راکتور مخلوطی Be)، بر حسب خنک کننده به راکتورهای گاز CO2 مایع (آب، فلز)، بر حسب فاز سوخت کند کنندهها به راکتورهای همگن، ناهمگن و بالاخره بر حسب کاربرد به راکتورهای قدرت، تولید نوکلید و تحقیقاتی تقسیم میشوند.
کاربردهای راکتورهای هستهای
– راکتورها انواع مختلف دارند برخی از آنها در تحقیقات، بعضی از آنها برای تولید رادیو ایزتوپهای پرانرژی برخی برای راندن کشتیها و برخی برای تولید برق بکار میروند.
– دوگروه اصلی راکتورهای هستهای بر اساس تقسیمبندی کاربرد آنها، راکتورهای قدرت و راکتورهای تحقیقاتی هستند. راکتورهای قدرت مولد برق بوده و راکتورهای تحقیقاتی برای تحقیقات هستهای پایه، مطالعات کاربردی تجزیهای و تولید ایزوتوپها مورد استفاده قرار میگیرند.
برق هستهای
از مهمترین منابع استفاده صلح آمیز از انرژی اتمی، ساخت راکتورهای هستهای جهت تولید برق میباشد. راکتور هستهای وسیلهای است که در آن فرآیند شکافت هستهای بصورت کنترل شده انجام میگیرد. در طی این فرآیند انرژی زیاد آزاد میگردد به نحوی که مثلا در اثر شکافت نیم کیلوگرم اورانیوم انرژی معادل بیش از ۱۵۰۰ تن زغال سنگ بدست میآید. هماکنون در سراسر جهان، راکتورهای متعددی در حال کار وجود دارند که بسیاری از آنها برای تولید قدرت و به منظور تبدیل آن به انرژی الکتریکی، پارهای برای راندن کشتیها و زیردریاییها، برخی برای تولید رادیو ایزوتوپوپها و تحقیقات علمی و گونههایی نیز برای مقاصد آزمایشی و آموزشی مورد استفاده قرار میگیرند. در راکتورهای هستهای که برای نیروگاههای اتمی طراحی شدهاند (راکتورهای قدرت)، اتمهای اورانیوم و پلوتونیم توسط نوترونها شکافته میشوند و انرژی آزاد شده گرمای لازم را برای تولید بخار ایجاد کرده و بخار حاصله برای چرخاندن توربینهای مولد برق بکار گرفته میشوند.
انواع راکتور اتمی
راکتورهای اتمی را معمولا برحسب خنک کننده، کند کننده، نوع و درجه غنای سوخت در آن طبقهبندی میکنند.
معروفترین راکتورهای اتمی، راکتورهایی هستند که از آب سبک به عنوان خنک کننده و کند کننده و اورانیوم غنی شده (۲ تا ۴ درصد ۲۳۵U) به عنوان سوخت استفاده میکنند. این راکتورها عموما تحت عنوان راکتورهای آب سبک (LWR) شناخته میشوند. راکتورهای PWR، BWR و WWER از این دستهاند. نوع دیگر، راکتورهایی هستند که از گاز به عنوان خنک کننده، گرافیت به عنوان کند کننده و اورانیوم طبیعی یا کم غنی شده به عنوان سوخت استفاده میکنند. این راکتورها به گاز – گرافیت معروفند. راکتورهای GCR، AGR و HTGR از این نوع میباشند.
راکتور PHWR راکتوری است که از آب سنگین به عنوان کند کننده و خنک کننده و از اورانیوم طبیعی به عنوان سوخت استفاده میکند. نوع کانادایی این راکتور به CANDU موسوم بوده و از کارایی خوبی برخوردار میباشد. مابقی راکتورها مثل FBR (راکتوری که از مخلوط اورانیوم و پلوتونیوم به عنوان سوخت و سدیم مایع به عنوان خنک کننده استفاده کرده و فاقد کند کننده میباشد) LWGR (راکتوری که از آب سبک به عنوان خنک کننده و از گرافیت به عنوان کند کننده استفاده میکند) از فراوانی کمتری برخوردار میباشند. در حال حاضر، راکتورهای PWR و پس از آن به ترتیب PHWR، WWER، BWR فراوانترین راکتورهای قدرت در حال کار جهان میباشند.
تاریخچه
به لحاظ تاریخی اولین راکتور اتمی در آمریکا بوسیله شرکت «وستینگ هاوس» و بمنظور استفاده در زیر دریائیها ساخته شد. ساخت این راکتور پایه اصلی و استخوان بندی تکنولوژی فعلی نیروگاههای اتمی PWR را تشکیل داد. سپس شرکت جنرال الکتریک موفق به ساخت راکتورهایی از نوع BWR گردید. اما اولین راکتوری که اختصاصا جهت تولید برق طراحی شده، توسط شوروی و در ژوئن ۱۹۵۴در «آبنینسک» نزدیک مسکو احداث گردید که بیشتر جنبه نمایشی داشت. تولید الکتریسیته از راکتورهای اتمی در مقیاس صنعتی در سال ۱۹۵۶ در انگلستان آغاز گردید.
تا سال ۱۹۶۵ روند ساخت نیروگاههای اتمی از رشد محدودی برخوردار بود، اما طی دو دهه ۱۹۶۶ تا ۱۹۸۵ جهش زیادی در ساخت نیروگاههای اتمی بوجود آمده است. این جهش طی سالهای ۱۹۷۲ تا ۱۹۷۶ که بطور متوسط هر سال ۳۰ نیروگاه شروع به ساخت میکردند بسیار زیاد و قابل توجه است. یک دلیل آن شوک نفتی اوایل دهه ۱۹۷۰ میباشد که کشورهای مختلف را بر آن داشت تا جهت تأمین انرژی مورد نیاز خود بطور زاید الوصفی به انرژی هستهای روی آورند. پس از دوره جهش فوق یعنی از سال ۱۹۸۶ تا کنون روند ساخت نیروگاهها به شدت کاهش یافته، بطوریکه بطور متوسط سالیانه ۴ راکتور اتمی شروع به ساخت میشوند.
سهم برق هستهای در تولید برق کشورها
کشورهای مختلف در تولید برق هستهای روند گوناگونی داشتهاند. به عنوان مثال کشور انگلستان که تا سال ۱۹۶۵ پیشرو در ساخت نیروگاه اتمی بود، پس از آن تاریخ، ساخت نیروگاه اتمی در این کشور کاهش یافت، اما برعکس در آمریکا به اوج خود رسید. کشور آمریکا که تا اواخر دهه ۱۹۶۰ تنها ۱۷ نیروگاه اتمی داشت، در طول دهههای ۱۹۷۰و ۱۹۸۰ بیش از ۹۰ نیروگاه اتمی دیگر ساخت. این مسئله نشان دهنده افزایش شدید تقاضای انرژی در آمریکاست. هزینه تولید برق هستهای در مقایسه با تولید برق از منابع دیگر انرژی در آمریکا کاملا قابل رقابت میباشد. هماکنون فرانسه با داشتن سهم ۷۵ درصدی برق هستهای از کل تولید برق خود در صدر کشورهای جهان قرار دارد. پس از آن به ترتیب لیتوانی (۷۳ درصد)، بلژیک (۵۷ درصد)، بلغارستان و اسلواکی (۴۷ درصد) و سوئد (۴۸٫۶ درصد) میباشند. آمریکا نیز حدود ۲۰ درصد از تولید برق خود را به برق هستهای اختصاص داده است. گرچه ساخت نیروگاههای هستهای و تولید برق هستهای در جهان از رشد انفجاری اواخر دهه ۱۹۶۰ تا اواسط ۱۹۸۰ برخوردار نیست، اما کشورهای مختلف همچنان درصدد تأمین انرژی مورد نیاز خود از طریق انرژی هستهای میباشند.
طبق پیشبینیهای به عمل آمده روند استفاده از برق هستهای تا دهههای آینده همچنان روند صعودی خواهد داشت. در این زمینه، منطقه آسیا و اروپای شرقی به ترتیب مناطق اصلی جهان در ساخت نیروگاه هستهای خواهند بود. در این راستا، ژاپن با ساخت نیروگاههای اتمی با ظرفیت بیش از ۲۵۰۰۰ مگا وات در صدر کشورها قرار دارد. پس از آن چین، کره جنوبی، قزاقستان، رومانی، هند و روسیه جای دارند. استفاده از انرژی هستهای در کشورهای کاندا، آرژانتین، فرانسه، آلمان، آفریقای جنوبی، سوئیس و آمریکا تقریبا روند ثابتی را طی دو دهه آینده طی خواهد کرد.
دیدگاههای اقتصادی و زیستمحیطی برق هستهای
جمهوری اسلامی ایران در فرآیند توسعه پایدار خود به تکنولوژی هستهای چه از لحاظ تأمین نیرو و ایجاد جایگزینی مناسب در عرصه انرژی و چه از نظر دیگر بهره برداریهای صلح آمیز آن در زمینههای صنعت، کشاورزی، پزشکی و خدمات نیاز مبرم دارد که تحقق این رسالت مهم به عهده سازمان انرژی اتمی ایران میباشد. بدیهی است در زمینه کاربرد انرژی هستهای به منظور تأمین قسمتی از برق مورد نیاز کشور قیود و فاکتورهای بسیار مهمی از جمله مسائل اقتصادی و زیست محیطی مطرح میگردند.
دیدگاه اقتصادی استفاده از برق هستهای
امروزه کشورهای بسیاری بویژه کشورهای اروپایی سهم قابل توجهی از برق مورد نیاز خود را از انرژی هستهای تأمین مینمایند. بطوری که آمار نشان میدهد از مجموع نیروگاههای هستهای نصب شده جهت تأمین برق در جهان به ترتیب ۳۵ درصد به اروپای غربی، ۳۳ درصد به آمریکای شمالی، ۱۶٫۵ درصد به خاور دور، ۱۳درصد به اروپای شرقی و نهایتا فقط ۰٫۷۴ درصد به آسیای میانه اختصاص دارد. بدون شک در توجیه ضرورت ایجاد تنوع در سیستم عرضه انرژی کشورهای مذکور، انرژی هستهای به عنوان یک گزینه مطمئن اقتصادی مطرح است.
بنابراین ابعاد اقتصادی جایگزینی نیروگاههای هستهای با توجه به تحلیل هزینه تولید (قیمت تمام شده) برق در سیستمهای مختلف نیرو قابل تأمل و بررسی است. از اینرو در اغلب کشورها، نیروگاههای هستهای با عملکرد مناسب اقتصادی خود از هر لحاظ با نیروگاههای سوخت فسیلی قابل رقابت میباشند. بهرحال طی چند دهه گذشته کاهش قیمت سوختهای فسیلی در بازارهای جهانی، سبب افزایش هزینههای ساخت نیروگاههای هستهای به دلیل تشدید مقررات و ضوابط ایمنی، طولانیتر شدن مدت ساخت و بالاخره باعث ایجاد مشکلات تأمین مالی لازم و بالا رفتن قیمت تمام شده هر واحد الکتریسیته در این نیروگاهها شده است.
از یک طرف مشاهده میشود که طی این مدت حدود ۴۰ درصد از هزینههای چرخه سوخت هستهای کاهش یافته است و از سویی دیگر با توجه به پیشرفتهای فنی و تکنولوژی حاصل از طرحهای استاندارد و برنامه ریزیهای دقیق به منظور تأمین سرمایه اولیه مورد نیاز مطمئن و به هنگام احداث چند واحد در یک سایت برای صرفه جوییهای ناشی از مقیاس مربوط به تأسیسات و تسهیلات مشترک مورد نیاز در هر نیروگاه، همچنان مزیت نیروگاههای اتمی از دیدگاه اقتصادی نسبت به نیروگاههای با سوخت فسیلی در اغلب کشورها حفظ شده است.
دیدگاه زیست محیطی استفاده از برق هستهای
افزایش روند روزافزون مصرف سوختهای فسیلی طی دو دهه اخیر و ایجاد انواع آلایندههای خطرناک و سمی و انتشار آن در محیط زیست انسان، نگرانیهای جدی و مهمی برای بشر در حال و آینده به دنبال دارد. بدیهی است که این روند به دلیل اثرات مخرب و مرگبار آن در آینده تداوم چندانی نخواهد داشت. از اینرو به جهت افزایش خطرات و نگرانیها تدریجی در مورد اثرات مخرب انتشار گازهای گلخانهای ناشی از کاربرد فرآیند انرژیهای فسیلی، واضح است که از کاربرد انرژی هستهای بعنوان یکی از رهیافتهای زیست محیطی برای مقابله با افزایش دمای کره زمین و کاهش آلودگی محیط زیست یاد میشود. همچنانکه آمار نشان میدهد، در حال حاضر نیروگاههای هستهای جهان با ظرفیت نصب شده فعلی توانستهاند سالانه از انتشار ۸ درصد از گازهای دیاکسید کربن در فضا جلوگیری کنند که در این راستا تقریبا مشابه نقش نیروگاههای آبی عمل کردهاند.
چنانچه ظرفیتهای در دست بهره برداری فعلی تولید برق نیروگاههای هستهای، از طریق نیروگاههای با خوراک ذغال سنگ تأمین میشد، سالانه بالغ بر ۱۸۰۰ میلیون تن دیاکسید کربن، چندین میلیون تن گازهای خطرناک دیاکسید گوگرد و نیتروژن، حدود ۷۰ میلیون تن خاکستر و معادل ۹۰ هزار تن فلزات سنگین در فضا و محیط زیست انسان منتشر میشد که مضرات آن غیرقابل انکار است. لذا در صورت رفع موانع و مسائل سیاسی مربوط به گسترش انرژی هستهای در جهان بویژه در کشورهای در حال توسعه و جهان سوم، این انرژی در دهههای آینده نقش مهمی در کاهش آلودگی و انتشار گازهای گلخانهای ایفا خواهد نمود.
در حالیکه آلودگیهای ناشی از نیروگاههای فسیلی سبب وقوع حوادث و مشکلات بسیار زیاد بر محیط زیست و انسانها میشود، سوخت هستهای گازهای سمی و مضر تولید نمیکند و مشکل زبالههای اتمی نیز تا حد قابل قبولی رفع شده است، چرا که در مورد مسایل پسمانداری با توجه به کم بودن حجم زبالههای هستهای و پیشرفتهای علوم هستهای بدست آمده در این زمینه در دفن نهایی این زبالهها در صخرههای عمیق زیر زمینی با توجه به حفاظت و استتار ایمنی کامل، مشکلات موجود تا حدود زیادی از نظر فنی حل شده است و طبیعتا در مورد کشور ما نیز تا زمان لازم برای دفع نهایی پسماندهای هستهای، مسائل اجتماعی باقیمانده از نظر تکنولوژیکی کاملا مرتفع خواهد شد.
از سوی دیگر بنظر میرسد که بیشترین اعتراضات و مخالفتها در زمینه استفاده از انرژی اتمی بخاطر وقوع حوادث و انفجارات در برخی از نیروگاههای هستهای نظیر حادثه اخیر در نیروگاه چرنوبیل میباشد، این در حالی است که براساس مطالعات بعمل آمده احتمال وقوع حوادثی که منجر به مرگ عدهای زیاد بشود نظیر تصادف هوایی، شکسته شدن سدها، انفجارات زلزله، طوفان، سقوط سنگهای آسمانی و غیره، بسیار بیشتر از وقایعی است که نیروگاههای اتمی میتوانند باعث گردند.
به هر حال در مورد مزایای نیروگاههای هستهای در مقایسه با نیروگاههای فسیلی صرفنظر از مسائل اقتصادی علاوه بر اندک بودن زبالههای آن، میتوان به تمیزتر بودن نیروگاههای هستهای و عدم آلایندگی محیط زیست به آلایندههای خطرناکی نظیر SO2، NO2، CO، CO2 پیشرفت تکنولوژی و استفاده هرچه بیشتر از این علم جدید، افزایش کارایی و کاربرد تکنولوژی هستهای در سایر زمینههای صلح آمیز در کنار نیروگاههای هستهای اشاره نمود.
مقایسه هزینههای اجتماعی تولید برق در نیروگاههای فسیلی و اتمی
در مجموع ارزیابیهای اقتصادی و مطالعات به عمل آمده در مورد مقایسه هزینه تولید (قیمت تمام شده) برق در نیروگاههای رایج فسیلی کشور و نیروگاه اتمی نشان میدهد که قیمت این دو نوع منبع انرژی صرفنظر از هزینههای اجتماعی، تقریبا نزدیک به هم و قابل رقابت با یکدیگر هستند. چنانچه قیمت مصرف انرژیهای فسیلی برای نیروگاههای کشور برمبنای قیمتهای متعارف بین المللی منظور شوند و همچنین در شرایطی که نرخ تسعیر هر دلار در کشور ۸۰۰۰ ریال تعیین گردد، هزینه تولید (قیمت تمام شده) هر کیلو وات ساعت برق در نیروگاههای فسیلی و اتمی بشرح زیر میباشد.
در تازهترین مطالعهای که برای تعیین هزینههای اجتماعی نیروگاههای هستهای در ۵ کشور اروپایی بلژیک، آلمان، فرانسه، هلند و انگلستان صورت گرفته است، میزان هزینههای اجتماعی ناشی از نیروگاههای هستهای در مقایسه با نیروگاههای فسیلی بسیار پائین است. در این مطالعه هزینههای خارجی هر کیلووات ساعت برق تولیدی در نیروگاههای هستهای در حدود ۰٫۳۹ سنت (معادل ۳۱٫۲ ریال) برآورده شده است. بنابراین در صورتیکه هزینههای اجتماعی تولید برق را در ارزیابیهای اقتصادی نیروگاههای فسیلی و هستهای منظور نمائیم قطعا قیمت تمام شده هر کیلو وات ساعت برق در نیروگاه هستهای نسبت به فسیلی بطور قابل ملاحظهای کاهش خواهد یافت.
به هر حال نیروگاههای فسیلی و هستهای هر کدام دارای مزایا و معایب خاص خود میباشند و ایجاد هر یک متناسب با مقتضیات زمانی و مکانی هر کشور خواهد بود و انتخاب نهایی و تصمیم گیری در این زمینه میبایست با توجه به فاکتورهایی از قبیل عوامل تکنولوژیکی، ارزشی، سیاسی، اقتصادی و زیست محیطی اتخاذ گردد.
قدر مسلم ایجاد تنوع در سیستم عرضه و تأمین انرژی از استراتژیهای بسیار مهم در زمینه توسعه سیستم پایدار انرژی در هر کشور محسوب میشود. در این راستا با توجه به بررسیهای صورت گرفته، شورای انرژی اتمی کشور مصمم به ایجاد نیروگاههای اتمی به ظرفیت کل ۶۰۰۰ مگاوات در سیستم عرضه انرژی کشور تا سال ۱۴۰۰ هجری شمسی میباشد.
چشم انداز
سایر دیدگاههای اقتصادی در مورد آینده انرژی هستهای حاکی از آن است که براساس تحلیل سطح تقاضا و منابع عرضه انرژی در جهان، توجه به توسعه تکنولوژیهای موجود و حقایقی نظیر روند تهی شدن منابع فسیلی در دهههای آینده، مزیتهای زیست محیطی انرژی اتمی و همچنین استناد به آمار و عملکرد اقتصادی و ضریب بالای ایمنی نیروگاههای هستهای، مضرات کمتر چرخه سوخت هستهای نسبت به سایر گزینههای سوخت و پیشرفتهای حاصله در زمینه نیروگاههای زاینده و مهار انرژی گداخت هستهای در طول نیم قرن آینده، بدون تردید انرژی هستهای یکی از حاملهای قابل دسترس و مطمئن انرژی جهان در هزاره سوم میلادی به شمار میرود.
در این راستا شورای جهانی انرژی تا سال ۲۰۲۰ میلادی میزان افزایش عرضه انرژی هستهای را نسبت به سطح فعلی حدود ۲ برابر پیش بینی مینماید. با توجه به شرایط موجود چنانچه از لحاظ اقتصادی هزینههای فرصتی فروش نفت و گاز را با قیمتهای متعارف بین المللی در محاسبات هزینه تولید (قیمت تمام شده) برای هر کیلو وات برق تولیدی منظور نماییم و همچنین تورم و افزایش احتمالی قیمتهای این حاملها (بویژه طی مدت اخیر) را براساس روند تدریجی به اتمام رسیدن منابع ذخایر نفت و گاز جهانی مد نظر قرار دهیم، یقینا در بین گزینههای انرژی موجود در جمهوری اسلامی ایران، استفاده از حامل انرژی هستهای نزدیکترین فاصله ممکن را با قیمت تمام شده برق در نیروگاههای فسیلی خواهد داشت.
راکتورهای با نوترون سریع، راکتورهای زاینده
یک راکتور هستهای گرمایی تولید میکند که منشأ آن در شکافت دو هسته قابل شکافت ۲۳۵U یا ۲۳۹Pu قرار دارد. تنها ماده موجود قابل کشافت در طبیعت، ۲۳۵U است که ۱٫۱۴۰ اورانیوم طبیعی را تشیل میدهد و بقیه اساسا ۲۳۸U غیر شکافتی است. هر شکافت اتم اورانیوم در اثر یک نوترون، ۲ تا ۳ نوترون با انرژی بالا (بطور متوسط ۲Mev) یعنی نوترونهای سریع (۲۰۰۰۰Km/s) را تولید میکند.
این نوترونها به نوبه خود میتوانند با سایر هستههای اورانیوم شکافت انجام دهند که نوترونهای گسیل شده شکافتهای دیگری را تولید میکنند و به این ترتیب واکنش زنجیرهای ایجاد میشود. اگر قطعه ماده قابل شکافت به حد کافی بزرگ باشد، تولید نوترونها تقویت شده و سبب انفجار میشود: این اساس بمب اتمی است. در یک راکتور هستهای یک عده پدیدههای دیگر را برای انجام واکنش مورد نظر قرار میدهند: تعدادی از نوترونها در اورانیوم بویژه در ۲۳۸U بدون تولید شکافت، تعدادی دیگر توسط مواد ساختاری جذب میشوند و بالاخره عده دیگری به بیرون مغز راکتور فرار میکنند و ناپدید میشوند.
شرایط ایجاد شکافت زنجیری
یک راکتور فقط با یک حجم معین که کمترین ماده قابل شکافت را داشته باشد، میتواند کار کند: کمترین مقدار ماده قابل شکافت را جرم بحرانی مینامند. در یک قطعه اورانیوم طبیعی، هر چه قدر بزرگ هم باشد، واکنش زنجیرهای غیر ممکن است: مقدار ماده قابل شکافت (۲۳۵U) بسیار کم است و اکثریت نوترونهای جذب شده با ۲۳۸U تلف میشوند. بنابراین باید بطور مصنوعی شکافتها را در مقابل جذبهای بدون شکافت در شرایط مساعدی قرار داد. دو راه امکان پذیر است:
۱. بطور قابل ملاحظهای مقدار ماده قابل شکافت را افزایش میدهند (اورانیوم را با ۲۳۵U غنی کرد یا به آن ۲۳۹Pu افزود).
۲. انرژی نوترونها را توسط کند کننده کاهش میدهند و آن نقش ۲۳۵U را (مقطع شکافت ۲۳۵U) در مقابل ۲۳۵۸U (مقطع جذب ۲۳۸U) تقویت میکند. به این ترتیب دو دسته راکتور شکل میگیرند.
انواع راکتور شکافتی
از یک طرف راکتورهایی که بطور مستقیم نوترونهایی با انرژی زیاد ناشی از شکافت را مورد استفاده قرار میدهد و این راکتورها به راکتورهای با نوترونهای سریع معروفند که ماده قابل احتراق آنها شامل یک نسبت زیادی از ماده شکافتی (در راکتورهای بزرگ ۱۵%) است، از طرف دیگر راکتورهایی که کند کنندهها را مورد استفاده قرار میدهند (راکتورهای با نوترونهای حرارتی) و ماده قابل احتراق آن میتواند اورانیوم طبیعی باشد.
لازم به یادآوری است که در راکتورهای با نوترونهای حرارتی نمیتوان اورانیوم طبیعی را مورد استفاده قرار داد، مگر آنکه مواد ساختاری و سیال خنک کننده که گرمای تولیدی را برای راه اندازی توربین آلترناتور انتقال میدهد، جذبهای اتلافی بسیار زیادی را سبب نشوند. در بسیاری از راکتورهای حرارتی نوع ماده ساختاری و سیال خنک کننده، یک غنای سبک (در حدود ۳ درصد) از ماده قابل احتراق را الزام میدارد.
ساختمان راکتور
از مجموعهای از یاختههای بنیادی که از مدادهای دراز یا سوزنهای ماده قابل احتراق تشکیل میشوند که سطح آنها توسط یک سیال خنک کننده پوشیده میشود. اگر راکتور با نوترون حرارتی باشد، این یاختهها در داخل کند کننده بطور منظم توزیع میشوند و در راکتور با نوترون سریع کند کننده وجود ندارد. این مجموعه، مغز راکتور را تشکیل میدهد و توسط بازتاب کنندهای احاطه میشود که فرار نوترونها را محدود میکند و یک محافظ بیولوژیکی (بتن) در مقابل تشعشعات دارد. در مورد راکتورهای با نوترونهای سریع منطقهای به نام غلاف و بطور مستقیم واقع در اطراف مغز، تولید تازه را امکان پذیر میسازد.
قسمت اساسی یک راکتور با نوترون حرارتی (مغز) از عناصر قابل احتراق تشکیل میشود که توسط یک سیال مخصوصی که بطور منظم در کند کننده قرار دارد، سرد میشود. ماده قابل احتراق شامل ماده شکافتی (معمولا اکسید اورانیوم کم و بیش غنی شده در ایزوتوپ ۲۳۵) اغلب به صورت مدادهایی (بخ قطر حدود ۱۰ تا ۱۲ میلی متار و به ۳٫۵ متر در یک راکتور بزرگ) در یک غلاف فلزی قرار داده میشود. سیال خنک کننده ممکن است آب معمولی، آب سنگین یا یک گاز باشد. کند کننده آب معمولی، آب سنگین یا گرافیت است. مغز راکتور با یک بازتاب کننده احاطه میشود که از همان ماده کند کننده تشکل میشود و فرار نوترونها را به حداقل میرساند، مجموعه در یک پوشش ضخیم بتونی قرار میگیرد تا در مقابل تشعشعات، یک حفاظ بیولوژیکی باشد.
در یک راکتور با نوترونهای سریع همان تشکیل دهندههای اساسی به استثنای کند کننده وجود دارد. ماده قابل احتراق از پلوتونیم که به صورت اکسید مخلوط PUO2 – UO2 است. سوزنهای ظریف ماده قابل احتراق (به قطر ۶ تا ۸ میلیمتر و به طول ۰٫۵ تا یک متر) با فولاد زنگ نزن پوشانده شده و توسط سدیم مذاب سرد میشوند. سایر سوزنها به نام غلاف، شامل اکسید UO2، مغز را احاطه میکنند. آنها تولید تازه را بر اثر تبدیل ۲۳۸U به ۲۳۸Pu سبب میشوند. بازتاب کننده معمولا از قطعات فولادی تشکیل میشود.
مورد خاص راکتورهای زاینده
نوعی از این راکتورها با مقدار زیادی از سدیم مایع خنک میشوند (مانند راکتور سوپرفنیکس که در مدار اولیه آن ۱۵۰۰ تن و در مدار ثانویه ۳۵۰۰ تن سدیم در نظر گرفته شده است). ظرفیت گرمای سدیم زیاد است و در صورت نبودن مصرف، دمای مغز راکتور بیش از چند درجه در ساعت افزایش نمییابد و آن خطر گرمی فزونی کلی را از بین میبرد و به راکتور زمان توقف بیشتری میدهد. به هنگام کار راکتور، دمای سدیم در حدود C 400˚ است و از دمای جوش آن (c 880˚) خیلی دور است. بنابراین، سدیم در ذخیره گرما برای کوتاه مدت نقش بسیار مؤثری دارد. زیرا در ذخیره گرما با وجود این سدیم دارای خطراتی است و احتیاطهای ویژهای را الزام میدارد و در تأسیسات کلاسیکی از آن استفاده نمیشود.
شکافت هستهای
اگر نوترون منفردی به یک قطعه ایزوتوپ ۲۳۵U نفوذ کند، در اثربرخورد به هسته اتم ۲۳۵U، اورانیوم به دو قسمت شکسته میشود که اصطلاحا شکافت هستهای نامیده میشود.
در واکنشهای شکافت هستهای مقادیر زیادی نیز انرژی آزاد میگردد (در حدود ۲۰۰Mev)، اما مسئله مهمتر اینکه نتیجه شکستن هسته ۲۳۵U، آزادی دو نوترون است که میتواند دو هسته دیگر را شکسته و چهار نوترون را بوجود آورد. این چهار نوترون نیز چهار هسته ۲۳۵U را میشکند. چهار هسته شکسته شده تولید هشت نوترون میکنند که قادر به شکستن همین تعداد هسته اورانیوم میباشند. سپس شکست هستهای و آزاد شدن نوترونها بصورت زنجیروار به سرعت تکثیر و توسعه مییابد. در هر دوره تعداد نوترونها دو برابر میشود، در یک لحظه واکنش زنجیری خود بخودی شکست هستهای شروع میگردد. در واکنشهای کنترل شده هستهای تعداد شکست در واحد زمان و نیز مقدار انرژی بتدریج افزایش یافته و پس از رسیدن به مقداری دلخواه ثابت نگهداشته میشود.
انرژی شکافت هستهای
کشف انرژی هستهای در جریان جنگ جهانی دوم صورت گرفت و اکنون برای شبکه برق بسیاری از کشورها هزاران کیلو وات تهیه میکند (نیروگاه هستهای). بحران انرژی بر اثر بالارفتن قیمت نفت در سال ۱۹۷۳ استفاده از انرژی شکافت هستهای بیشتر وارد صحنه کرد. در حال حاضر ممالک اروپایی انرژی هستهای را تنها انرژی میداند. که میتواند در اکثر موارد جایگزین نفت شود. استفاده از انرژی شکافت هستهای که بر روی یک ماده قابل احتراق کانی که بصورت محدود پایه گذاری میشود. برای سایر کشورها خطرات بسیار دارد در حال حاضر تولید الکتریسته با استفاده از شکافت هستهای کنترل شده به میزان زیادی توسعه یافته و مورد قبول واقع شده است. تولید انرژی هستهای در کشورهای توسعه یافته بخش مهمی از طرح انرژی ملی را تشکیل میدهد.
انرژی بستگی هستهای
میتوان تصور کرد که جرم هسته، M، با جمع کردن Z (تعداد پروتونها) ضربدر جرم پروتون و N تعداد نوترونها ضربدر جرم نوترون بدست میآید.
M = Z×Mp + N×Mn
از طرف دیگر M همیشه کمتر از مجموع جرمهای تشکیل دهندههای منزوی هسته است. این اختلاف به توسط فرمول انیشتین توضیح داده میشود که رابطه بین جرم و انرژی هم ارزی جرم و انرژی را برقرار میسازد. اگر یک دستگاه مادی دارای جرم باشد در این صورت دارای انرژی کلی E است. E = M C2 که در آن C سرعت نور در خلا و M جرم کل هسته مرکب از نوکلئونها و E مقدار انرژیی است که در اثر فروپاشی جرم M تولید میشود. بنابر این اصول انرژی هستهای بر آزاد سازی انرژی پیوندی هسته استوار است. هر سیستمی که دارای انرژی پیوندی بیشتر باشد پایدار میباشد. در واقع جرم مفقود شده در واکنشهای هستهای طبق فرمول E = M C2 به انرژی تبدیل میشود. پس انرژی بستگی اختلاف جرم هسته و جرم نوکلئونهای تشکیل دهنده آن است، که معرف کاری است که باید انجام شود تا نوکلئونها از هم جدا شوند.
مواد شکافتنی
مواد ناپایدار برای اینکه به پایداری برسند، انرژی گسیل میکنند تا به حالت پایدار برسد. معمولا عناصری شکافت پذیر هستند که جرم اتمی آنها بالای ۱۵۰ باشد، ۲۳۵U و ۲۳۸U در معادن یافت میشود. ۹۹٫۳ درصد اورانیوم معادن ۲۳۸U میباشد. و تنها ۷% آن ۲۳۵U میباشد. از طرفی ۲۳۵U با نوترونهای کند پیشرو واکنش نشان میدهد. ۲۳۸U تنها با نوترونهای تند کار میکند، البته خوب جواب نمیدهد. بنابر این در صنعت در نیروگاههای هستهای ۲۳۵U به عنوان سوخت محسوب میشود. ولی به دلایل اینکه در طبیعت کم یافت میشود. بایستی غنی سازی اورانیوم شود، یعنی اینکه از ۷ درصد به ۱ الی ۳ درصد برسانند.
شکافت ۲۳۵U
در این واکنش هستهای وقتی نوترون کند بر روی ۲۳۵U برخورد میکند به ۲۳۶U تحریک شده تبدیل میشود. نهایتا تبدیل به باریوم و کریپتون و ۳ تا نوترون تند و ۱۷۷ Mev انرژی آزاد میشود. پس در واکنش اخیر به ازای هر نوکلئون حدود ۱ Mev انرژی آزاد میشود. در واکنشهای شیمیایی مثل انفجار به ازای هر مولکول حدود ۳۰ Mev انرژی ایجاد میشود. لازم به ذکر است در راکتورهای هستهای که با نوترون کار میکند، طبق واکنشهای به عمل آمده ۲ الی۳ نوترون سریع تولید میشود. حتما این نوترونهای سریع باید کند شوند.
-
متأسفانه راکتور هستهای ایران به لطف دولت تدبیر و امید پر از بتن شد.
ولی خوب شد برای مردمی که بصیرت پیدا کنند و به صحبتهای مقام معظم رهبری گوش کنند. -
ساعت به ساعت مذاکره تیم مذاکره کنندگانمان را از طریق کانال خبر دنبال می کردم. به دفعات نام راکتور آب سنکین اراک مورد استفاده قرار می گرفت. بسیار کنجکاو بودم که بدانم راکتور چیست و چه کار می کند.
دست همه شما که بیدریغ اطلاعات لازم در اختیارمان قرار می دهید و ما را آگاه می کنید.سپاسگزارم.